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The character of the total power operation

TOBIAS BARTHEL

NATHANIEL STAPLETON

In this paper we compute the total power operation for the Morava E theory of any

finite group up to torsion. Our formula is stated in terms of the GLn(Qp)action on

the Drinfeld ring of full level structures on the formal group associated to E theory.

It can be specialized to give explicit descriptions of many classical operations.

Moreover, we show that the character map of Hopkins, Kuhn, and Ravenel from E 

theory to GLn(Zp)invariant generalized class functions is a natural transformation

of global power functors on finite groups.

55N22; 55S12

1 Introduction

Power operations and their variants are ubiquitous throughout homotopy theory. The

Steenrod operations on mod p cohomology and the Adams operations on topological

K theory are familiar examples. These operations have proven extremely useful; for

instance, the Adams operations were used to give a short and elegant proof of the

Hopf invariant one problem [AA66]. More generally, many cohomology theories are

equipped with this extra structure which is a consequence of an E∞ ring structure on

the representing spectrum.

It is a theorem of Goerss, Hopkins, and Miller [GH04] that Morava E theory admits a

unique E∞ ring structure. In the homotopy category, the E∞ ring structure manifests

itself as an H∞ ring structure which is equivalent to the data of a collection of multi

plicative cohomology operations known as total power operations. The study of these

operations began in earnest in [And95] in which a connection is established between

the total power operations and isogenies of the formal group associated to En . In this

paper, we give a formula for the total power operations applied to a finite group in terms

of the action of GLn(Qp) on the Drinfeld ring of full level structures on the formal

group associated to En . This is the same action that appears in the local Langlands

correspondence [Car90].
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1002 Tobias Barthel and Nathaniel Stapleton

1.1 Motivation and background

Fix a prime p, a natural number n, and a height n formal group law Γ over κ, a

perfect field of characteristic p. This data determines the E∞ ring spectrum En known

as Morava E theory. It has been studied extensively because of its close relationship

to several areas of mathematics: Work of Devinatz and Hopkins [DH04] as well as

Rognes [Rog08] demonstrates that En is a Galois extension of the K(n)local sphere,

a fundamental object of the stable homotopy category. It is closely connected to

algebraic geometry as the coefficient ring E0
n carries the universal deformation G of

Γ . Morava E theory is also related to representation theory, being a generalization of

padic K theory that admits a wellbehaved character theory. In this paper we will take

advantage of the last two relationships to study the total power operations determined

by the unique E∞ ring structure on En .

Let X be a topological space and let EΣm ×Σm Xm be the Borel construction for the

canonical Σm action on Xm . The total power operations are natural multiplicative

nonadditive maps

Pm : E0
n(X) −→ E0

n(EΣm ×Σm X
m

),

defined for all m > 0. These maps are quite mysterious and notoriously difficult to

compute, see [Rezb]. At height 2, Pm has been explicitly determined for X a point

when p = 2 and m = 2 and when p = 3 and m = 3, see [Reza, Zhu14]. Above height

2 there have been no explicit computations. Many of the most important operations

on En , including the Adams operations, Hecke operations, and the logarithm [Rez06],

can be built out of the total power operations using various simplifications of Pm .

A useful simplification of Pm is obtained as the restriction of the total power operation

along the diagonal X −→ Xm . This produces a map

Pm : E0
n(X) −→ E0

n(BΣm × X) ∼= E0
n(BΣm) ⊗E0

n
E0

n(X),

the isomorphism being a consequence of the freeness of E0
n(BΣm) as a module over

E0
n [Str98, Proposition 3.6]. Let I ⊂ E0

n(BΣpk ) be the image of the transfer along the

inclusion Σ
p

pk−1 ⊂ Σpk , then the quotient

Ppk/I : E0
n(X) −→ E0

n(BΣpk )/I ⊗E0
n

E0
n(X)

is a ring map [BMMS86, Chapter VIII, Proposition 1.4.(iv)] [Str98, Lemma 8.11].

Thus it is reasonable to hope that Ppk/I may be attacked using algebraic geometry

associated to G . For X = BA , where A is a finite abelian group, this was accomplished

by Ando [And95] and Ando, Hopkins, and Strickland [AHS04]. In constrast to these
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The character of the total power operation 1003

approaches, we apply a form of character theory available for En in order to simplify

Pm .

Generalized character theory for Morava E theory was constructed by Hopkins, Kuhn,

and Ravenel in [HKR00] building on work of Adams on padic K theory in [Ada78]

and extended by the second author in [Sta13]. An introduction to the subject is available

in [Sta]. As E theory is constructed homotopy theoretically, it is surprising that E0
n(BG)

behaves so much like a (completed) “higher" representation ring.

Let L = Zn
p and T = L∗ , the ptypical Pontryagin dual, so that there is a noncanonical

isomorphism T ∼= (Qp/Zp)n . Hopkins, Kuhn, and Ravenel construct a p−1E0
n algebra

C0 that corepresents isomorphisms of pdivisible groups between T and G:

hom(C0,R) ∼= Iso(R ⊗ T,R ⊗G).

Thus there is an obvious action of Aut(T), the automorphisms of T, on C0 .

Let Cln(G,C0) be the ring of generalized class functions on G taking values in C0 .

Concretely, Cln(G,C0) is the set of C0 valued functions on hom(L,G)/∼ , the quotient

of the set hom(L,G) by the conjugation action of G . Note that Aut(T) is contravari

antly isomorphic to GLn(Zp) by taking the Pontryagin dual. There is an Aut(T)action

on Cln(G,C0) given by combining the action of Aut(T) on hom(L,G)/∼ by precom

position with the Pontryagin dual and the action of Aut(T) on C0 [HKR00, Section

6.3].

In [HKR00, Section 6], Hopkins, Kuhn, and Ravenel construct a map of E0
n algebras

called the generalized character map

χ : E0
n(BG) −→ Cln(G,C0).

Theorem C in [HKR00] proves that the induced map

C0 ⊗ χ : C0 ⊗E0
n

E0
n(BG)

∼=
−→ Cln(G,C0)

is an isomorphism for any finite group. Theorem C further states that the isomorphism

C0 ⊗ χ is Aut(T)equivariant and restricts to an isomorphism on fixed points

p−1E0
n(BG)

∼=
−→ Cln(G,C0)Aut(T).

This brings us to the motivating question for this paper. Does there exist a multiplicative

natural transformation on generalized class functions that is compatible with the total

power operation for En through the generalized character maps of [HKR00]:

E0
n(BG)

Pm //

χ

��

E0
n(BG ≀ Σm)

χ

��
Cln(G,C0)

∃? //❴❴❴ Cln(G ≀ Σm,C0).

Geometry & Topology XX (20XX)



1004 Tobias Barthel and Nathaniel Stapleton

There is no formal reason why this might be possible,1 and yet the construction of such

a natural transformation is one of the goals of this paper.

1.2 Main results

In fact, we construct an infinite family of multiplicative natural transformations that

answer the question. In order to state the results precisely we need to establish some

notation.

Let Isog(T) be the monoid of endoisogenies of T, i.e., the monoid of endomorphisms

with finite kernel, and let Sub(T) be the set of finite subgroups in T. There is an

Aut(T)principal bundle

Isog(T) ։ Sub(T)

given by taking an isogeny to its kernel. For each section φ of this principal bundle

we construct a multiplicative natural transformation

Pφm : Cln(−,C0) ⇒ Cln(− ≀ Σm,C0)

that is compatible with the total power operation Pm through the character map χ . We

refer the reader to the paragraphs leading up to Definition 5.6 for the explicit formula

for Pφm .

Theorem A (Theorem 9.1) For all n,m ≥ 0, let Pm be the total power operation

for Morava En , let φ be a section of the principal bundle above, and let χ be the

generalized character map. There is a commutative diagram

E0
n(BG)

Pm //

χ

��

E0
n(BG ≀ Σm)

χ

��
Cln(G,C0)

Pφm // Cln(G ≀ Σm,C0)

natural in G .

As part of Theorem 10.1, we further prove that each of these “total power operations"

Pφm may be restricted to the Aut(T)fixed points. In Corollary 10.2, we show that the

result is independent of φ and we call it the “rational total power operation"

PQ
m : p−1E0

n(BG) −→ p−1E0
n(BG ≀ Σm).

1It is not possible to base change Pm to C0 because Pm is not a ring map. Further,

simplifications of Pm such as Ppk/I , which are ring maps, are not E0
n algebra maps.

Geometry & Topology XX (20XX)



The character of the total power operation 1005

Theorem B (Theorem 10.1) With the notation of Theorem A, there is a commutative

diagram

E0
n(BG)

Pm //

χ

��

E0
n(BG ≀ Σm)

χ

��
p−1E0

n(BG)
PQ

m

// p−1E0
n(BG ≀ Σm).

We note that the rationalization p−1E0
n(BG) retains much of the information contained

in E0
n(BG), so our result approximates the total power operation closely. In fact,

E0
n(BG) is finitely generated and free for many finite groups G . These are the socalled

good groups[HKR00, BS15, Sch11]. Finally, we show that PQ
m deserves to be called

the rational total power operation by proving it is a global power functor in the sense

of [Gan, Section 4].

Theorem C (Theorem 10.4, Corollary 10.5) The rational total power operation PQ
m

is a global power functor in such a way that the character map

χ : E0
n(B−) −→ p−1E0

n(B−)

is a map of global power functors.

Note that Theorem C is not a direct consequence of Theorem B because Theorem B

does not say anything about composites of rational total power operations.

1.3 Outline

In Section 2, we establish notation and terminology that will be used in the rest of the

paper.

The first part of this paper, comprised of Section 3 through Section 6, contains results

that do not rely on Morava E theory. We hope that some of the ideas in these sections

might be of interest to readers outside of stable homotopy theory. The goal of Section 3

is a thorough study of conjugacy classes of commuting elements in wreath products

G ≀ Σm and their algebrogeometric interpretation. We suspect that this material is

wellknown, but were unable to locate a reference in the literature. Section 4 deals

with the action of the isogenies of T on the Drinfeld ring of full levelstructures on

G . This is fundamental for the rest of the paper and extends work of [HKR00]. For

all m ≥ 0 we construct multiplicative natural transformations Pφm on class functions in

Section 5 and study their basic properties. The question of whether one can choose a

Geometry & Topology XX (20XX)



1006 Tobias Barthel and Nathaniel Stapleton

section φ such that the associated transformation Pφm inherits the structure of a global

power functor is considered in Section 6. We give an affirmative answer for heights 1

and 2 by stipulating an explicit solution.

The second part begins in Section 7 with some recollections on Morava E theory and

power operations. As a first step towards the proof of our main theorem, we consider

the case of abelian groups in Section 8. Using work of Schlank and Stapleton [SS15],

we extend the algebrogeometric description of the additive total power operations

for abelian groups due to Ando, Hopkins, and Strickland [AHS04]. Inspired by Artin

induction, Section 9 then proves Theorem A by reducing it to the case of abelian groups.

Our work culminates in the final Section 10, where the previous results are combined to

descend the multiplicative natural transformations to rationalized E theory. We prove

uniqueness and establish the global power structure on the resulting multiplicative

natural transformation.
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2 Notation and conventions

Let G be a finite group and fix a prime p and a natural number n ≥ 0. We set L = Zn
p

and let hom(L,G) be the set of continuous homomorphisms of groups from L to G .

Fixing a basis of L gives a bijection

hom(L,G) ∼= {(g1, . . . , gn)|[gi, gj] = e and gpk

i = e for some k > 0},

where the target is the set of ntuples of pairwise commuting primepower order

elements in G . The group G acts on this set by conjugation; we write hom(L,G)/∼
for the set of conjugacy classes. Moreover, we will write [α] for the conjugacy class

of a map α : L −→ G .

Geometry & Topology XX (20XX)



The character of the total power operation 1007

Let G ≀Σm be the wreath product of G with Σm , which is constructed as the semidirect

product Gm ⋊ Σm with respect to the permutation action of Σm on Gm . The wreath

product fits into a short exact sequence

1 −→ Gm −→ G ≀ Σm
π

−→ Σm −→ 1.

We will always write π for the projection onto the symmetric group, and represent

elements in G ≀ Σm as (g1, . . . , gm;σ) with gi ∈ G and σ ∈ Σm . We may abbreviate

this to (ḡ;σ), where ḡ = (g1, . . . , gm) and ḡi = gi . Multiplication in the wreath

product is given by

(1) (ḡ;σ)(h̄; τ ) = (ḡ(σh̄);στ ),

where (σh̄)i = hσ−1 i .

We call a map α : L −→ Σm transitive if the map represents a transitive Lset of order

m . Equivalently, the image imα of the map α is a transitive abelian subgroup of Σm .

This can only occur when m = pk . We say that a map

α : L −→ G ≀ Σpk

is transitive if πα is transitive. Let hom(L,G ≀ Σpk )trans be the set of transitive maps

and let hom(L,G ≀ Σpk )trans
/∼ be the set of conjugacy classes of transitive maps.

Pontryagin duality is pervasive throughout this paper. We will use the notation (−)∗ for

the (ptypical) Pontryagin duality endofunctor on abelian groups. Thus for an abelian

group A , we write

A∗
= hom(A,Qp/Zp)

for the dual abelian group. For a map of abelian groups A
f

−→ B , we write f ∗ for the

dual map. Let T = L∗ , then we have a noncanonical isomorphism

T ∼= (Qp/Zp)n.

Let [pk] : T → T the multiplication by pk map and let T[pk] be the pk torsion in T .

Let Subpk (T) be the set of subgroups of order pk in T. Let Summ(T) be the set of formal

sums of subgroups
⊕

i Hi with Hi ⊂ T and
∑

i |Hi| = m . It is clear that Subpk (T) is

a subset of Sumpk (T). Given a subgroup H ⊂ T of order pk , let fH : H →֒ T be the

inclusion. The Pontryagin dual of fH ,

f ∗H : L ։ H∗,

has the associated short exact sequence

0 → ker(f ∗H) →֒ L ։ H∗ → 0.

Geometry & Topology XX (20XX)



1008 Tobias Barthel and Nathaniel Stapleton

The kernel of f ∗H is canonically isomorphic to (T /H)∗ and noncanonically isomorphic

to L. We set LH = ker(f ∗H) ⊂ L.

More generally, we define Subpk (T,G) to be the set of pairs consisting of a subgroup

of order pk , H ⊂ T , and a conjugacy class in hom(LH,G). We will write such a

pair as (H, [α]). We define Summ(T,G) to be the collection of formal sums of pairs
⊕

i(Hi, [αi]), where Hi ⊂ T such that
∑

i |Hi| = m , and

[αi] ∈ hom(LHi ,G)/∼.

If e is the trivial group, then we have

Subpk (T, e) = Subpk (T)

and

Summ(T, e) = Summ(T).

Finally, given an isogeny φH : T −→ T with kernel H , it is necessary to have notation

for the induced triangle

T
φH

�� ��❄
❄❄

❄❄
❄❄

❄
qH

}}}}④④
④④
④④
④④

T /H
ψH

∼= // T .

The Pontryagin dual triangle then takes the form

L

LH

. �

q∗H

>>⑥⑥⑥⑥⑥⑥⑥⑥
L .
/ O

φ∗H

``❅❅❅❅❅❅❅❅

ψ∗
H

∼=oo

3 Conjugacy classes in wreath products

The purpose of this section is to establish a canonical bijection between conjugacy

classes in wreath products and formal sums of subgroups in T:

hom(L,G ≀ Σm)/∼
F

∼=
// Summ(T,G).

In fact, we have canonical bijections, which are natural in G , as indicated in the table

below.

Geometry & Topology XX (20XX)
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Conjugacy classes Subgroups

hom(L,Σpk )trans
/∼ Subpk (T)

hom(L,Σm)/∼ Summ(T)

hom(L,G ≀ Σpk )trans
/∼ Subpk (T,G)

hom(L,G ≀ Σm)/∼ Summ(T,G)

In the case that L = Zp , these isomorphisms can be obtained from Section 7.7 of

[Zel81].

We will use F for any of the bijections in the table (they are all special cases of the

bottom entry of the table). The top two bijections are wellknown; we will begin by

describing F in these cases.

The canonical bijection between hom(L,Σpk )trans
/∼ and Subpk (T) is constructed as fol

lows: Let L
α

−→ Σpk be a transitive map and let L′ = kerα . The map sends [α] to

the kernel of the Pontryagin dual of the map L′ →֒ L

H = ker(L∗
։ (L′)∗).

Since a conjugate map has the same kernel, this assignment does not depend on the

chosen representative α for the conjugacy class [α]. The resulting subgroup H is an

invariant of the conjugacy class [α]. There is another description of this subgroup.

The map α determines a transitive Lset of order pk . The lattice L′ is the stabilizer of

any element in the set and then H may be formed as the kernel above.

The second bijection is constructed similarly. A map α : L → Σm is an Lset X of

order m . Let X =
∐

i

Xi be the decomposition of X into transitive Lsets. By following

the recipe above, each component gives a subgroup Hi ⊂ T. Since a conjugate map

corresponds to an isomorphic Lset, this collection of subgroups of T is an invariant

of the conjugacy class:

[α] 7→ F([α]) =
⊕

i

Hi.

Now we establish the third and fourth bijections in the table above. Let G be a left

Gtorsor (a free transitive left Gset) and let m be a set with m ∈ N elements and a

trivial Gaction. We will make use of three basic lemmas regarding Gsets of the form

G × m.

Let x̄ = (x1, . . . , xm) be a set of generators for G × m as a Gset. This choice of

generators induces an isomorphism

(2) x̄∗ : AutG(G × m) ∼= G ≀ Σm.

Geometry & Topology XX (20XX)



1010 Tobias Barthel and Nathaniel Stapleton

We may be more explicit about this isomorphism. An automorphism f ∈ AutG(G×m)

permutes the m Gtorsors, call this permutation σf . Thus f (xi) = gσf (i)xσf (i) for some

gσf (i) ∈ G . The isomorphism is given by

f 7→ x̄∗(f ) = (g−1
1 , . . . , g−1

m ;σf ) = (ḡ−1;σf ).

This defines a homomorphism: If h ∈ AutG(G × m) maps to

h 7→ (k̄−1;σh) ∈ G ≀ Σm,

then

(h ◦ f )(xi) = h(gσf (i)xσf (i)) = gσf (i)kσhσf (i)xσhσf (i)

and, by Equation (1),

(k̄−1(σhḡ−1);σhσf )(xi) = ((k̄−1(σhḡ−1))σhσf (i))
−1xσhσf (i)

= (k−1
σhσf (i)(σhḡ−1)σhσf (i))

−1xσhσf (i)

= (σhḡ)σhσf (i)kσhσf (i)xσhσf (i)

= gσ−1
h
σhσf (i)

kσhσf (i)xσhσf (i)

= gσf (i)kσhσf (i)xσhσf (i).

Given a group homomorphism s : G → K and a Gset X , we may functorially form

the left K set

K ×G X,

which is the quotient of K × X by the relation (ks(g), x) ∼ (k, gx). This is a K set

through the left action of K on itself. The operation K ×G − is left adjoint to the

functor from K sets to Gsets given by viewing a K set as a Gset through s. The

K set

K ×G (G × m)

is a disjoint union of m K torsors and the unit of the adjunction is a canonical map of

Gsets

η : G × m → K ×G (G × m).

Given a set of generators x̄ of G × m, η(x̄) is a set of generators of K ×G (G × m) and

this induces the commutative diagram

(3) AutG(G × m)
x̄∗ //

��

G ≀ Σm

��
AutK(K ×G (G × m))

η(x̄)∗ // K ≀ Σm.

Although the isomorphism of Equation 2 depends on a choice of generators of G×m,

the next lemma shows that this dependence is removed by passing to conjugacy classes.

Geometry & Topology XX (20XX)



The character of the total power operation 1011

Lemma 3.1 There is a canonical isomorphism, natural in the group G ,

hom(L,G ≀ Σm)/∼
∼= hom(L,AutG(G × m))/∼.

Proof Let x̄ and ȳ be sets of generators of G × m as a Gset. Then there exists an

automorphism of f of G × m such that f (xi) = yi . This automorphism induces an

automorphism

AutG(G × m)
cf
−→ AutG(G × m)

given by conjugation with f and the following diagram commutes

AutG(G × m)
x̄ //

cf

��

G ≀ Σm

AutG(G × m).

ȳ

77♣♣♣♣♣♣♣♣♣♣♣

For α and α′ conjugate elements in hom(L,AutG(G × m)), it suffices to prove that

x̄∗(α) is conjugate to ȳ∗(α′). Assume that α′ = gαg−1 , then the following diagram

commutes

AutG(G × m)

cg

��

x̄ // G ≀ Σm

��✤
✤
✤
✤
✤
✤
✤

L

α
99sssssssssss

α′
// AutG(G × m)

ȳ

''◆◆
◆◆◆

◆◆◆
◆◆◆

cf

��
AutG(G × m)

x̄
// G ≀ Σm.

The dashed arrow is built by passing through the isomorphisms and is thus given by

conjugation. Thus x̄∗(α) is conjugate to ȳ∗(α′).

The isomorphism is natural by Diagram 3.

A map L → AutG(G×m) corresponds to an Lset structure on G×m in the category

of Gsets. By adjunction, this corresponds to an L×Gset of order |G| × m with a

free Gaction.

Lemma 3.2 By adjunction, there is a canonical isomorphism that is natural in the

group G between

hom(L,AutG(G × m))/∼

and the set of isomorphism classes of L×Gsets of order |G|×m with a free Gaction.

Geometry & Topology XX (20XX)



1012 Tobias Barthel and Nathaniel Stapleton

The projection map G × m → m induces

AutG(G × m) → Aut(m).

Thus it makes sense to define

hom(L,AutG(G × m))trans
/∼

to consist of the conjugacy classes that induce a transitive Laction on m under the

projection. These, in turn, give rise to isomorphism classes of transitive L×Gsets

with a free Gaction under the isomorphism of the lemma above. Transitive Lactions

on m only exist when m has cardinality pk for some k . In the transitive case we will

write pk instead of m.

As usual, isomorphism classes of transitive L×Gsets of order |G| × pk correspond

(canonically) to conjugacy classes of index |G|×pk subgroups of L×G . The conjugacy

classes of subgroups giving rise to a transitive L×Gset with a free Gaction have a

nice description.

Lemma 3.3 There is a canonical isomorphism, natural in the group G , between

conjugacy classes of index |G| × pk subgroups M of L×G such that (L×G)/M has

a free Gaction and pairs

(LH ⊆ L, [αH : LH → G])

consisting of an index pk sublattice LH ⊂ L and a conjugacy class of maps

[αH : LH → G].

Proof Subgroups M ⊂ L×G with the property that (L×G)/M has a free Gaction

are in correspondence with subgroups of L×G that intersect 0 × G ⊂ L×G trivially.

The data of a subgroup with this property has a very simple description. If M ⊂ L×G

intersects 0 × G trivially, then the composite

M →֒ L×G → L

is injective, where the last map is the projection: If m 6= m′ ∈ M map to (l, g) 6=

(l, g′) respectively, then m(m′)−1 maps to (0, g(g′)−1) which is not the identity. This

contradicts the assumption that the intersection with 0 × G is trivial.

Thus M may be identified with LH for some LH ⊂ L with H ⊂ T of order m . Since

L is abelian, a conjugacy class of subgroups is a subgroup. Thus a conjugacy class of

subgroups of L×G of order |G| × pk that intersect 0 × G trivially corresponds to a

subgroup LH ⊂ L of index pk and a conjugacy class of maps [αH : LH → G].

Geometry & Topology XX (20XX)
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Next we prove that the isomorphism is natural. Let s : G → K be a group homomor

phism. The induced map

id×s : L×G → L×K

sends conjugacy classes of subgroups to conjugacy classes of subgroups. If M ⊂ L×G

intersect 0 × G trivially, then so does (id×s)(M).

Also, s induces the map on pairs (LH, [α]) sending

(LH, [α]) 7→ (LH, [sα]).

Now, by the construction above of (LH, α) from a subgroup M that intersect 0 × G

trivially, we see that s(M) is sent to (LH , sα). Conjugating the subgroup M just

conjugates sα .

By construction, the isomorphism of Lemma 3.1 restricts to a canonical isomorphism

hom(L,G ≀ Σpk )trans
/∼

∼= hom(L,AutG(G × pk))trans
/∼ .

For [α] ∈ hom(L,G ≀ Σpk )trans
/∼ , we may use the previous three lemmas to define

F([α]) = (H, [αH]).

Proposition 3.4 The map

F : hom(L,G ≀ Σpk )trans
/∼

∼= // Subpk (T,G),

given by F([α]) = (H, [αH]), is a canonical isomorphism that is natural in G .

Proof Combine the canonical isomorphisms of the previous three lemmas.

It is worth explaining an equivalent way of obtaining (H, [αH]) from [α] ∈ hom(L,G ≀

Σpk )trans
/∼ . We have a commutative diagram

LH
(βi) //

q∗H

��

Gpk

��
L α //

πα
""❋

❋❋
❋❋

❋❋
❋❋

❋ G ≀ Σpk

π

��
Σpk ,
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defining pk maps βi : LH → G . A set of generators x̄ of G × pk produces an

isomorphism

x̄∗ : AutG(G × pk) → G ≀ Σpk

and the image of LH

(q∗H ,βi)
−→ L×G is the stabilizer of xi in the transitive L×Gset

determined by the composite (x̄∗)−1α . By Lemma 3.3, all of the maps βi are conjugate

and we may take αH to be any of the βi ’s.

Corollary 3.5 We may choose α ∈ [α] ∈ hom(L,G ≀ Σpk )trans
/∼ with the property that

it factors through the inclusion

(imαH) ≀ Σpk
� _

��
L α

//

::t
t

t
t

t
G ≀ Σpk .

Proof For any α ∈ [α], the pk maps

LH → G

are all conjugate. Thus we may choose elements g2, . . . , gpk ∈ G conjugating them to

the first one. The element (1, g2, . . . , gpk ; e) ∈ G ≀Σpk conjugates α to a map satisfying

the required condition.

Since the isomorphism class of a finite L×Gset is determined by the isomorphism

classes of the transitive components of a representative, for [α] ∈ hom(L,G ≀ Σm)/∼
we may define

F([α]) =
⊕

i

(Hi, [αHi ]),

where the pairs (Hi, [αHi ]) are determined by the transitive components of the L×Gset

associated to [α].

Proposition 3.6 There is a canonical isomorphism, which is natural in G ,

F : hom(L,G ≀ Σm)/∼
∼= // Summ(T,G)

given by F([α]) =
⊕

i(Hi, [αHi ]).
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Remark 3.7 There is a more geometric interpretation of the above results, see [Gan,

Section 3.3.4, Corollary 3.7]. Conjugacy classes of tuples of commuting elements are

the homotopy classes

[BL,BG ≀ Σm].

The space BL is the pcomplete torus. The homotopy classes [BL,BΣm] are the

(isomorphism classes of) mfold covers of the pcomplete torus and the homotopy

classes [BL,BG ≀Σm] are the (isomorphism classes of) principal Gbundles on mfold

covers of the pcomplete torus.

Now that we have proved the main result of this section, we draw several consequences

and prove related results that will be used in the remaining part of the paper.

Lemma 3.8 Let
∑

j ajp
j be the padic expansion of m , then the inclusion

∏

j

Σ
aj

pj ⊆ Σm

induces a surjection
∏

j

Sumpj(T,G)×aj ։ Summ(T,G).

Proof This is immediate from the definitions.

Proposition 3.9 The map ∆ : G ×Σpk −→ G ≀ Σpk induces the map

Subpk (T) × hom(L,G)/∼ // Subpk (T,G)

defined by (H, [α : L → G]) 7→ (H, [αq∗H]).

Proof Let β : L → Σpk be transitive with the property that F([β]) = H ; we are

interested in the composite

L
α×β
−→ G × Σpk → G ≀ Σpk .

This fits in the commutative diagram

LH

q∗H

��

αq∗H // G

��

∆ // Gpk

��
L

α×β // G × Σpk

%%❏
❏❏

❏❏
❏❏

❏❏

∆ // G ≀ Σpk

��
Σpk ,
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where the top row consists of the kernels of the maps to Σpk . It follows that

[(∆(α × β))H] = [α(q∗H)].

Note that we now have a way of describing conjugacy classes in iterated wreath products

of symmetric groups. By Proposition 3.6, there is a bijection

hom(L,G ≀ Σs ≀ Σt)/∼
∼= Sumt(T,G ≀ Σs).

Conjugacy classes from LHi to G ≀ Σs satisfy the same kind of formula, thus we may

write
⊕

i

(Hi, [αHi ]) =
⊕

i

(Hi,
⊕

j

(Ki,j, [(αHi )Ki,j])),

where Ki,j ⊂ T /Hi .

Proposition 3.10 Let st = m , then the natural inclusion

∇ : G ≀ Σs ≀ Σt −→ G ≀ Σm

induces the map
⊕

i

(Hi,
⊕

j

(Ki,j, [(αHi )Ki,j])) 7→
⊕

i,j

(Ti,j, [(αHi )Ki,j]) =
⊕

i,j

(Ti,j, [αTi,j]),

where Ti,j is defined as the pullback in the following diagram

Ti,j

��

// T

��
Ki,j

// T /Hi.

Proof It suffices to show this on α : L −→ G ≀ Σpj ≀ Σpt with α transitive and

αH : LH −→ G ≀ Σpj transitive. When α and αH are transitive, ∇α is transitive. In

this case, we have K ⊂ T /H and the pullback T is the kernel of the composite

T
qH
−→ T /H −→ (T /H)/K.

Now we check that [(αH)K] = [(∇α)T ]. By Corollary 3.5, α ∈ [α] can be chosen so

that

(LH)K
//

��

L

α

��
G

∆ //

=

��

G ≀ Σs ≀ Σt

∇
��

// Σs ≀ Σt

��
G

∆ // G ≀ Σm
// Σm
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commutes, where (LH)K is the kernel of the composite L → G ≀ Σs ≀ Σt → Σs ≀ Σt .

Since Σs ≀ Σt → Σm is injective, (LH)K = LT and (αH)K = αT .

Let L′ ∼= Zn
p be another rank n lattice and let T′

= (L′)∗ . Let

σ : T
∼=

−→ T′

be an isomorphism. Precomposition with σ∗ induces a bijection

hom(L,G ≀ Σm)/∼
∼=

−→ hom(L′,G ≀ Σm)/∼.

We explain the effect of this map on Summ(T,G).

Proposition 3.11 Precomposition with σ∗ on hom(L,G ≀ Σm)/∼ induces the map

Summ(T,G) → Summ(T′,G)

given by
⊕

i

(Hi, [αHi ]) 7→
⊕

i

(σ(Hi), [αHiσ
∗
|
L′
σ(Hi)

]).

Proof First we will verify the claim on the subgroups Hi ⊂ T . If LHi stabilizes

x ∈ mπα , then Hi is the kernel of T = L∗ → L∗
Hi

. The stabilizer of x ∈ mπασ∗ is the

preimage of L∗
Hi

under σ∗ . The kernel of the map (L′)∗ → ((σ∗)−1 LHi)
∗ is σHi .

Now we may assume that we have a transitive map L
α

−→ G ≀ Σpk such that [πα]

corresponds to H . By Corollary 3.5, we may assume that α|LH
= ∆αH . Since

(σ∗)−1 LH = LσH , the diagram

L′
σH

//

σ∗
|
L′
σ(H) ��

L′

σ∗

��
LH

//

αH

��

L

α

��
G

∆ // G ≀ Σpk ,

shows that [αH] is sent to [αHσ
∗
|
L′
σ(H)

].

There is an obvious left action of Aut(T) on hom(L,G≀Σm)/∼ given by precomposition

with the Pontryagin dual. The previous proposition gives a formula for this action on

Summ(T,G).

Corollary 3.12 The left action of σ ∈ Aut(T) on Summ(T,G) induced by the action

of Aut(T) on hom(L,G ≀ Σm)/∼ is given by
⊕

i

(Hi, [αHi ])
σ
7→

⊕

i

(σ(Hi), [αHiσ
∗
|Lσ(Hi)

]).
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4 The action of isogenies on C0

Let Γ be a height n formal group over a perfect field κ of characteristic p. In this

section we introduce three rings depending on this data: the Lubin–Tate ring En , the

Drinfeld ring D∞ , and the rationalized Drinfeld ring C0 .

The Lubin–Tate ring En , which is noncanonically isomorphic to W(κ)[[u1, . . . , un−1]],

first appears in the study of formal groups in [LT66]. The Lubin–Tate moduli problem

associates to a complete local ring R with residue field κ the groupoid DefΓ(R) with

objects deformations of Γ to R and morphisms ⋆isomorphisms, see [Rez98, Section

4]. The main theorem of Lubin and Tate produces an equivalence of groupoids

Spf(En)(R) ≃ DefΓ(R).

The ring En carries the universal deformation G of Γ .

Let Dk be the Drinfeld ring of full levelk structures on G , which was introduced

in [Dri74, Section 4B]. Note that Drinfeld omits the word “full" as all of his level

structures are full. The ring Dk is a complete local En algebra that is finitely generated

and free as an En module, with the property that

Spf(Dk) ∼= Level(T[pk],G),

where Level(T[pk],G) is the functor sending a complete local En algebra R to the

set of level structures Level(T[pk],R ⊗ G). In particular, Dk has been studied by

homotopy theorists in [HKR00, Sections 6.1 and 6.2], [And95, Section 2.4], [AHS04,

Part 3], and [Str97, Section 7].

For H ⊂ T[pk] ⊂ T a finite subgroup, the formal group G/H may be defined as a

deformation over Dk and thus is classified by a map En
QH
−→ Dk . It follows that there

is a (necessarily unique) ⋆isomorphism

Dk ⊗QH

En
G ∼= (Dk ⊗En G)/H.

Let

D∞ = colim
k

Dk = colim
k

ΓLevel(T[pk],G),

where the maps in the indexing diagram are induced by the precomposition

(T[pk] −→ G) 7→ (T[pk−1] →֒ T[pk] −→ G).

We define2 hom(D∞,R) = limk hom(Dk,R), an element in this set being an infinite

compatible family of level structures.

2We are treating D∞ as an indobject since the colimit is not a complete local ring.
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There are actions of several large groups on D∞ , see [Car90, Section 1.4]. There is an

action of Aut(T) on D∞ that plays a prominent role in the theorems in [HKR00]. This

action is given by precomposing a level structure T →֒ G with the given automorphism

of T. Now let Isog(T) be the monoid of endoisogenies (endomorphisms with finite

kernel) of T. Note that Isog(T) is contravariantly isomorphic to M
det 6=0
n (Zp), the

monoid of n × n matrices with coefficients in Zp that have nonzero determinant. We

will extend the opposite of the action of Aut(T) on D∞ to an action of Isog(T) on

D∞ . After proving this result, the authors discovered that it seems to be wellknown.

Because we were unable to locate a proof in the literature, we include the argument.

Proposition 4.1 The action of the group Aut(T) by En algebra maps on D∞ given

by precomposing a level structure with the inverse automorphism extends to an action

of Isog(T) by ring maps.

Proof Fix an isogeny φH : T −→ T with kernel H . We want to construct a map

D∞
φH
−→ D∞

by mapping to a cofinal subcategory of the diagram category. For H ⊆ T[pk] ⊂ T, fix

k′ ≥ k such that T[pk] ⊆ φH(T[pk′ ]). Consider the following diagram

En
QH //

��

Dk

��
Dk

//❴❴❴ Dk′
// R,

where QH is the map classifying the deformation G/H . We would like to construct

the dashed map.

The map Dk′ −→ R is a map of En algebras for the standard En algebra structure on

Dk′ . Thus we have a level structure T[pk′ ] →֒ R ⊗G . Taking the quotient by H gives

the level structure

T[pk′ ]/H ∼= φH(T[pk′ ]) →֒ (R ⊗G)/H.

We put a different En algebra structure on R by using QH . We abuse notation and

denote the composite En
QH
−→ Dk′ −→ R by QH . Recall that we have the canonical

isomorphism (R⊗En G)/H ∼= R ⊗QH

En
G . Precomposition with the inclusion T[pk] ⊆

φH(T[pk′ ]) gives

T[pk] →֒ R ⊗QH

En
G,

which is classified by a map Dk −→ R making the whole diagram commute. Now

take R = Dk′ .
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To check compatibility of the maps, it suffices to consider the following situation. Let

l > k and l′ > k′ so that T[pl] ⊂ φH(T[pl′]), then the commutative diagram

T[pk′ ]
� � //

� _

��

Dl′ ⊗En G

=

��
T[pl′ ]

� � // Dl′ ⊗En G

gives rise to a commutative diagram

T[pk]
� � //

� _

��

φH(T[pk′ ])
� � //

� _

��

(Dl′ ⊗En G)/H
∼= //

=

��

Dl′ ⊗QH

En
G

=

��

T[pl]
� � // φH(T[pl′ ])

� � // (Dl′ ⊗En G)/H
∼= // Dl′ ⊗QH

En
G.

This implies that the diagram

En
QH //

��

Dk

��
Dk

��

//❴❴❴ Dk′

��
Dl

//❴❴❴ Dl′

commutes. We can now make precise the (more informal sounding) statement that φH

sends the universal level structure T →֒ D∞ ⊗En G to the composite

T
ψ−1

H−→ T /H −→ (D∞ ⊗En G)/H
∼=

−→ D∞ ⊗QH

En
G.

Finally we show that this action extends the action of Aut(T) on D∞ by precomposition

with the inverse automorphism. Indeed, by the above, the automorphism φe ∈ Aut(T)

sends the universal level structure T →֒ D∞ ⊗En G to the composite

T
φ−1

e−→ T −→ D∞ ⊗En G,

because in this case ψe = φe , due to the diagram

T
φe //

qe=id $$■
■■

■■
■■

■■
■ T

T /e = T .

ψe

OO
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We note a corollary of the proof.

Corollary 4.2 Given an endoisogeny φH of T with kernel H ⊂ T, the following

diagram commutes:

T
φH //

qH   ❆
❆❆

❆❆
❆❆

❆❆
T � � // D∞ ⊗QH

En
G

T /H
� � //

ψH

OO

(D∞ ⊗En G)/H.

∼=

OO

The ring

C0 = p−1D∞ = Q⊗ D∞

was introduced in [HKR00, Section 6.2] (where it is called L(E0)) to serve as suitable

coefficients for the codomain of the generalized character map. By the previous

proposition, C0 is acted on by Isog(T). Hopkins, Kuhn, and Ravenel [HKR00,

Proposition 6.6] showed that C
Aut(T)
0

∼= p−1En . It seems reasonable to conjecture that

C
Isog(T)
0

∼= Qp . The ring C0 also has an algebrogeometric description as it carries the

universal isomorphism (of pdivisible groups) T
∼=

−→ G .

Remark 4.3 The action defined above in Proposition 4.1 is a right action of Isog(T)

on D∞ . The monoid Isog(T) is dual to M
det 6=0
n (Zp), which acts on D∞ on the left.

Given x ∈ C0 and an isogeny φH , we will write φ∗H(x) for the action by the Pontryagin

dual. One further remark seems necessary. In [HKR00] the inverse action is defined

and they write it as a left action even though it is a right action. This could cause

confusion.

Example 4.4 Take n = 1 and the height 1 formal group Ĝm . In this case the Drinfeld

ring Dk is just Zp adjoin all primitive pk th roots of unity. The isogeny [pk] acts trivially

on D∞ . This can be seen in many ways. To see it using the proof above note that QH

must be the standard algebra structure since En
∼= Zp . Thus (R ⊗ Ĝm)/H ∼= R ⊗ Ĝm

canonically. Now the level structure Λk −→ R ⊗ Ĝm is precisely the restriction to

Λk of the one we began with. Since every isogeny has the form upk for some unit

(automorphism) u, we see that

D
Isog(Qp/Zp)
∞ = D

Aut(Qp/Zp)
∞ = Zp.

Example 4.5 In fact, the isogeny [pk] : T −→ T always acts by isomorphisms on

D∞ . When κ ⊂ Fpn and G is the universal deformation of the Honda formal group,

[pk] acts by the identity. This is due to the fact that, in this case, there is a ⋆isomorphism

(Dk ⊗En G)/T[pk] ∼= Dk ⊗En G

covering the nkfold Frobenius (which is the identity) on κ.
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5 Multiplicative natural transformations on class functions

The goal of this section is to construct a collection of operations on class functions,

Pφm : Cln(G,C0) −→ Cln(G ≀ Σm,C0),

that are multiplicative, nonadditive, natural in the finite group G . These operations

combine the action of isogenies on C0 with the description of conjugacy classes in

wreath products given in Section 3. In Section 9, we will show that the operations

constructed in this section are compatible with the total power operation in E theory.

Recall that L = Zn
p and that hom(L,G)/∼ is the set of conjugacy classes of maps from

L to G (see Section 2). Given an isogeny φH : T → T with kernel H ⊂ T, there is

an action map φ∗H : C0 −→ C0 . Also recall that ψH : T /H
∼=

−→ T is the isomorphism

induced by φH and that ψ∗
H : L −→ LH is the Pontryagin dual.

Definition 5.1 For a finite group G and a subgroup H ⊂ T, define ClHn (G,C0) to

be the set of C0 valued functions on hom(LH,G)/∼ . When H is the trivial group we

will abbreviate this to Cln(G,C0). Recall that C0 depends on n and that ClHn (G,C0)

depends on the prime p even though it is not part of the notation.

Proposition 5.2 Given an isogeny φH : T −→ T with kernel H we may produce a

natural map of rings

(−)φH : Cln(G,C0) −→ ClHn (G,C0)

defined by f φH ([α]) = φ∗H f ([αψ∗
H]).

Proof Note that the map is well defined.

To prove naturality, let K
i

−→ G be a map of finite groups. This induces restriction

maps Res: Cln(G,C0) −→ Cln(K,C0) and ResH : ClHn (G,C0) −→ ClHn (K,C0). Now

we show that ResH φH = φH Res. Let α : LH −→ K , then we have

ResH(f φH )([α]) = f φH ([iα])

= φ∗Hf ([iαψ∗
H])

= φ∗H Res(f )([αψ∗
H])

= Res(f )φH ([α]).
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For completeness, we show the map is a ring map. Let f , g ∈ Cln(G,C0), then

(f + g)φH ([α]) = φ∗H(f + g)([αψ∗
H])

= φ∗H(f ([αψ∗
H]) + g([αψ∗

H]))

= φ∗Hf ([αψ∗
H]) + φ∗Hg([αψ∗

H])

= f φH ([α]) + gφH ([α])

and

(fg)φH ([α]) = φ∗H(fg)([αψ∗
H ])

= φ∗H(f ([αψ∗
H])g([αψ∗

H ]))

= φ∗Hf ([αψ∗
H])φ∗Hg([αψ∗

H])

= f φH ([α])gφH ([α]).

Corollary 5.3 When restricted to Aut(T) ⊂ Isog(T) the maps defined above are

endomorphisms of Cln(G,C0). This is the inverse of the action of GLn(Zp) on class

function described by [HKR00].

Proof The important thing to note is that qe = id : T → T, so we have a triangle

T
φe //

id ##❍
❍❍

❍❍
❍❍

❍❍
T

T /e = T

ψe

OO

factoring the identity map. Thus ψe = φe and Proposition 5.2 produces a map

Cln(G,C0) −→ Cln(G,C0)

and

f φe ([α]) = φ∗e f ([αψ∗
e ]) = φ∗e f ([αφ∗e ]),

which is the action described in [HKR00] after taking into account Remark 4.3.

Remark 5.4 We will often use the canonical isomorphism

Cln(G,C0) ⊗C0
Cln(K,C0)

∼=
−→ Cln(G × K,C0),

which follows immediately from the definition of Cln(−,C0).
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Our goal is to construct a family of multiplicative natural transformations

Cln(−,C0) =⇒ Cln(− ≀ Σm,C0)

for all m ≥ 0.

Let Sub(T) be the set of finite subgroups of T. We may produce a finite subgroup of

T from an isogeny α : T −→ T by taking the kernel of α . The induced surjection

Isog(T) −→ Sub(T)

makes Isog(T) into a principal Aut(T)bundle over Sub(T), and we denote its set of

sections by Γ(Sub(T), Isog(T)).

Fix a section φ ∈ Γ(Sub(T), Isog(T)) and let φH = φ(H). Proposition 3.6 and

Proposition 4.1 may be combined to construct a map

Pφm : Cln(G,C0) −→ Cln(G ≀ Σm,C0).

For f ∈ Cln(G,C0), we define

Pφm(f )(
⊕

i

(Hi, [αi])) =
∏

i

f φHi ([αi])

=
∏

i

φ∗Hi
f ([αiψ

∗
Hi

]).

Let F : hom(L,G ≀ Σm)/∼
∼=

−→ Summ(T,G) be the isomorphism of Proposition 3.6.

For a conjugacy class [α] ∈ hom(L,G ≀ Σm)/∼ , we set

Pφm(f )([α]) = Pφm(f )(F([α]))

= Pφm(f )(
⊕

i

(Hi, [ᾱi])).

Proposition 5.5 Each section φ ∈ Γ(Sub(T), Isog(T)) gives a natural multiplicative

transformation

Pφm : Cln(−,C0) =⇒ Cln(− ≀ Σm,C0).

Proof Multiplicativity follows from Proposition 5.2. Indeed, for f , g ∈ Cln(G,C0)

we have
∏

i

f φH ([αi])
∏

i

gφH ([αi]) =
∏

i

f φH ([αi])g
φH ([αi])

=
∏

i

(fg)φH ([αi]).
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A map of groups K
j

−→ G induces a map on conjugacy classes j∗ : hom(L,K)/∼ −→

hom(L,G)/∼ and a restriction map Cln(G,C0)
Res
−→ Cln(K,C0). We show that the

diagram

Cln(G,C0)
Pφm(G) //

Res

��

Cln(G ≀ Σpk ,C0)

Res

��
Cln(K,C0)

Pφm(K) // Cln(K ≀ Σpk ,C0)

commutes. We have a commutative diagram

K ≀ Σpk
//

��

G ≀ Σpk

��
Σpk

= // Σpk .

Thus

j∗(
⊕

i

(Hi, [αi])) =
⊕

i

(Hi, j∗[αi]),

and this implies the result.

Definition 5.6 We call the map

Pφm : Cln(−,C0) =⇒ Cln(− ≀ Σm,C0)

the pseudopower operation associated to φ ∈ Γ(Sub(T), Isog(T)).

Remark 5.7 It is important to note that Pφ1 is not necessarily the identity. It depends

on the choice of automorphism φe ∈ Isog(T).

Note that there is an action of Aut(T) on Γ(Sub(T), Isog(T)) given by multiplication

on the left. For γ ∈ Aut(T), φ ∈ Γ(Sub(T), Isog(T)), and H ∈ Sub(T), we have

(γφ)H = γ(φH) : T → T .

This action is compatible with the action of Aut(T) on class functions.

Proposition 5.8 For γ ∈ Aut(T) and φ ∈ Γ(Sub(T), Isog(T)), we have

Pφm(f γ) = Pγφm (f ).
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Proof It suffices to evaluate on conjugacy classes. By multiplicativity it suffices to

check the claim on elements of Subm(T,G). Let (H, [α]) ∈ Subm(T,G), then

Pφm(f γ)(H, [α]) = φ∗H f γ([αψ∗
H])

= φ∗Hγ
∗f ([αψ∗

Hγ
∗])

= Pγφm (f )(H, [α]).

6 A total power operation on class functions

In this section we study the basic properties of the pseudopower operations from the

previous section. Most importantly, we find that if φ satisfies a certain combinatorial

identity, then Pφm equips Cln(−,C0) with the structure of a global power functor in the

sense of [Gan, Section 4]. We prove that there are sections φ satisfying this identity

when n = 1, 2.

The functor Cln(−,C0) is a global Green functor in the sense of [Gan, Section 3].

Transfers, restrictions, and their properties are discussed in Section 3 of [Gan] and

in Theorem D of [HKR00]. If K ⊂ G , f ∈ Cln(K,C0), and α : L −→ G , then the

formula for the transfer is

Tr(f )([α]) =
∑

gK∈(G/K)imα

f ([gαg−1]).

We begin by proving an analogue of Proposition VIII.1.1 from [BMMS86].

Let i, j ≥ 0 and consider the following maps:

∇ : G ≀ Σi ≀ Σj −→ G ≀ Σij,(4)

∆ : G −→ G ≀ Σm,

∆i,j : G ≀ (Σi × Σj) −→ G ≀ Σi+j,

δ : (G × K) ≀ Σm −→ (G ≀ Σm) × (K ≀ Σm).

Let

Tri,j : Cln(Σi × Σj,C0) −→ Cln(Σm,C0)

be the transfer along Σi × Σj ⊂ Σm , where i + j = m .

Proposition 6.1 Let φ ∈ Γ(Sub(T), Isog(T)) and m, l ≥ 0, then the pseudopower

operations associated to φ makes the following diagrams commute:
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(1)

Cln(G,C0)
Pφm×Pφ

l //

Pφm+l

��

Cln(G ≀ Σm,C0) × Cln(G ≀ Σl,C0)

×
��

Cln(G ≀ Σm+l,C0)
∆∗

m,l // Cln(G ≀ (Σm × Σl),C0),

(2)

Cln(G,C0) × Cln(K,C0)
Pφm×Pφm//

Pφm ++❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲❲

❲❲❲❲
Cln(G ≀ Σm,C0) × Cln(K ≀ Σm,C0)

δ∗

��
Cln((G × K) ≀ Σm),

(3)

Cln(G,C0)
Pφm //

(Pφ1 )×m ((◗◗
◗◗◗

◗◗◗
◗◗◗

◗
Cln(G ≀ Σm,C0)

∆∗

��
Cln(Gm,C0),

(4)

Pφm(f1 + f2) = Pφm(f1) + Pφm(f2) +

m−1
∑

j=1

Trj,m−j(P
φ
j (f1) × Pφm−j(f2)).

Proof These are all standard. We elaborate on the last formula.

Let
⊕

i(Hi, [αi]) ∈ Summ(T,G). Note that

Pφm(f1 + f2)(
⊕

i

(Hi, [αi])) =
∏

i

(φ∗Hi
f1([αψ∗

Hi
]) + φ∗Hi

f2([αψ∗
Hi

]))

and expand this into a sum (without simplifying). Assume that the sum of subgroups

is indexed by S so that
⊕

i

Hi =
⊕

i∈S

Hi.

The formula is completely combinatorial. Let

Zj = {T ⊂ S|
∑

i∈T

|Hi| = j}.

By a standard argument the transfer equals

Trj,m−j(P
φ
j (f1)×Pφm−j(f2))(

⊕

i∈S

(Hi, [αi])) =
∑

T∈Zj

Pφj (f1)(
⊕

i∈T

(Hi, [αi]))P
φ
m−j(f2)(

⊕

i∈S\T

(Hi, [αi])).

As j varies this hits exactly the summands from the expanded sum.
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Let J ⊂ Cln(G ≀ Σpk ,C0) be the ideal generated by the image of the transfer along the

maps

G ≀ (Σi × Σj) −→ G ≀ Σpk

for i, j > 0 and i+ j = pk . In the special case that G = e, we will let I ⊂ Cln(Σpk ,C0)

be the ideal generated by the transfer along the maps Σi × Σj ⊂ Σpk .

We now give a description of J in the spirit of Section 3.

Proposition 6.2 The ideal J consists of the factors of

Cln(G ≀ Σpk ,C0) =
∏

Sum
pk (T,G)

C0

corresponding to the sums with more than one summand.

Proof This follows immediately from the formula for the transfer. If there is a lift

G ≀ (Σi × Σj)

��
L α //

::t
t

t
t

t
t

G ≀ Σpk

up to conjugacy, then F([πα]) must have more than one subgroup. Now the transfer

of the characteristic class function concentrated on the lift is a generator of the factor

corresponding to [α].

Remark 6.3 We could define J for m 6= pk , but the previous proposition shows that,

in this case, J = Cln(G ≀ Σm,C0).

We define some simplifications of Pφm . Consider

Pφ
pk/J : Cln(G,C0) −→ Cln(G ≀ Σpk ,C0)/J,

Pφm = ∆
∗Pφm : Cln(G,C0) −→ Cln(G,C0) ⊗C0

Cln(Σm,C0),

where ∆ : G ×Σpk → G ≀ Σpk , and

P
φ
pk/I : Cln(G,C0) −→ Cln(G,C0) ⊗C0

Cln(Σpk ,C0)/I.

Corollary 6.4 The maps Pφ
pk/J and P

φ
pk/I are both ring maps.

Proof This follows immediately from the definition of Pφm and Proposition 6.2.
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Remark 6.5 By construction, the pseudopower operation Pφm restricts to a map

Cln(G,D∞) → Cln(G ≀ Σm,D∞).

Instead of defining Pφ
pk/J and P

φ
pk/I as above, we could have defined them as the

rationalization of a map with domain Cln(G,D∞). This is not true of Pφm as it is not

additive.

Example 6.6 Let (H, [α]) ∈ Subpk (T,G). We compute the effect of P
φ
pk/I on

Cln(G,C0). Using Proposition 3.9 we see that

(P
φ
pk/I)(f )(H, [α]) = Pφ

pk (f )(H, [αq∗H])

= f φH ([αq∗H])

= φ∗Hf ([αq∗Hψ
∗
H])

= φ∗Hf ([αφ∗H]).

Example 6.7 When m = pkn , there is a further natural simplification of Pφm . If we

choose φ to take T[pk] to [pk] : T −→ T, then we may compose P
φ
pkn/I further with

the map

Cln(Σpkn ,C0)/I −→ C0

that projects onto the factor corresponding to T[pk]. This gives a map

ψpk

: Cln(G,C0) −→ Cln(G,C0)

known as the Adams operation corresponding to T[pk]. The formula for it can be

derived from the previous example:

(P
φ
pkn/I)(f )(T[pk], [α]) = φ∗T[pk]f ([αφ∗T[pk]]).

When κ ⊂ Fpn and G is the universal deformation of the Honda formal group (fol

lowing Example 4.5), this simplifies to give

f ([αφ∗T[pk]]).

This map is induced by the map on conjugacy classes hom(L,G)/∼ −→ hom(L,G)/∼
sending

[α : L → G] 7→ [L
pk

−→ L
α

−→ G],

recovering the usual formula for the Adams operations on class functions when n = 1.

We see that we have analogues of all of the parts of Proposition VIII.1.1 from

[BMMS86] except Part (ii), which is the fundamental relation that a global power

functor satisfies (see Section 4 in [Gan] as well). Now we classify the sections φ that

give rise to a pseudopower operation that does satisfy this relation.
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Definition 6.8 A section φ ∈ Γ(Sub(T), Isog(T)) is a power section if for all H ⊂

T ⊂ T

φT = φT/HφH,

where T/H = φH(T).

Proposition 6.9 The pseudopower operation Pφm is a global power functor if and only

if φ is a power section.

Proof Assume φ is a power section. Let st = m , we must show that

Cln(G,C0)
Pφm //

Pφs
��

Cln(G ≀ Σm,C0)

∇∗

��
Cln(G ≀ Σs,C0)

Pφt // Cln(G ≀ Σs ≀ Σt,C0)

commutes.

Recall that Ti,j fits into the following commutative diagram

Ti,j

��

// T

��

φHi // T

Ki,j
// T /Hi.

ψHi

==④④④④④④④④④

Thus we have an induced map

ψHi/Ki,j : T /Ti,j → T /ψHi (Ki,j).

This fits into the commutative diagram

(5) T

qHi

��

φHi

&&▼▼
▼▼▼

▼▼
▼▼▼

▼▼▼
▼

T /Hi

ψHi //

��

T

qψHi
(Ki,j)

��

φTi,j/Hi=φψHi
(Ki,j)

$$❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

T /Ti,j
ψHi/Ki,j

// T /ψHi(Ki,j)
ψTi,j/Hi

// T .

Since φ is a power section, we have the relation

φTi,j/Hi
φHi = φTi,j .
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The composite of the lefthand vertical maps is qTi,j . Thus we have an equality

ψTi,j/Hi
ψHi/Ki,j = ψTi,j .

Applying Pontryagin duality to this equality gives

ψ∗
Ti,j

= ψ∗
Hi
|LψHi

(Ki,j)
ψ∗

Ti,j/Hi
.

This relation is used in going from line 6 to line 7 of the equalities below.

Proposition 3.10 shows that a generalized conjugacy class in G ≀ Σs ≀ Σt has the form
⊕

i

(Hi,
⊕

j

(Ki,j, [(αHi )Ki,j ])).

Now we may use the definition of the pseudopower operation to compute the effect of

Pφt P
φ
s and Pφm on a class function f ∈ Cln(G,C0). Let f ∈ Cln(G,C0), then

Pφt (Pφs (f ))(
⊕

i

(Hi,
⊕

j

(Ki,j, [(αHi )Ki,j]))) =
∏

i

(Pφs (f ))φHi (
⊕

j

(Ki,j, [(αHi )Ki,j ]))

=
∏

i

φ∗Hi
Pφs (f )((

⊕

j

(Ki,j, [(αHi )Ki,j ]))ψ
∗
Hi

)

=
∏

i

φ∗Hi
Pφs (f )(

⊕

j

(ψHi (Ki,j), [(αHi )Ki,jψ
∗
Hi
|LψHi

(Ki,j)
]))

=
∏

i

φ∗Hi
Pφs (f )(

⊕

j

(φHi (Ti,j), [(αHi )Ki,jψ
∗
Hi
|LψHi

(Ki,j)
]))

=
∏

i

∏

j

φ∗Hi
(f )

φTi,j/Hi ([(αHi )Ki,jψ
∗
Hi
|LψHi

(Ki,j)
])

=
∏

i

∏

j

φ∗Hi
φ∗Ti,j/Hi

f ([(αHi )Ki,jψ
∗
Hi
|LψHi

(Ki,j)
ψ∗

Ti,j/Hi
])

=
∏

i

∏

j

φ∗Ti,j
f ([(αHi )Ki,jψ

∗
Ti,j

])

= Pφm(f )(
⊕

i,j

(Ti,j, [(αHi )Ki,j ])).

Going from the second to third line of the equalities we have used Proposition 3.11

applied to ψHi .

The reverse implication follows immediately.

Example 6.10 When n = 1, there is an obvious power section: for Z/pk ⊂ Qp/Zp

we let φZ/pk be the multiplication by pk map on Qp/Zp .
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The authors have been unable to find a general method for producing power sections

for all n. We now turn to the case of n = 2, which is important for applications to

elliptic cohomology. We write elements of Isog((Qp/Zp)2) as matrices with entries in

Zp , but view these as acting on (Qp/Zp)2 .

Lemma 6.11 For each H ∈ Subp((Qp/Zp)2), there exists a matrix φH such that

φ2
H = [p] =

[

p 0

0 p

]

and φH((Qp/Zp)2[p]) = H.

Proof Associate to the subgroup generated by (1
p
, i

p
) the matrix

[

−i 1

p − i2 i

]

and to the subgroup generated by (0, 1
p
) the matrix

[

0 p

1 0

]

.

Let us fix endomorphisms for each subgroup of order p as in the above lemma and let

N be the submonoid of End(Z2
p) generated by the associated matrices φH . Note that,

if H denotes a finite cyclic subgoup of (Qp/Zp)2 , then there exists a unique ordered

tuple of matrices (φK1
, . . . , φKi ) associated to subgroups Kj of order p such that

H = ker(φKi · · ·φK1
). The next lemma provides a generalization of this observation to

arbitrary finite subgroups H ⊂ (Qp/Zp)2 , thereby producing a normal form for φH .

Lemma 6.12 Suppose H ⊂ (Qp/Zp)2 and let k be the unique natural number with

(Qp/Zp)2[pk] ⊆ H and (Qp/Zp)2[pk+1] * H . Choose subgroups Kα of order p such

that

H = ker(φKi · · · φK1
), (i.e., |H| = pi )

then the matrix [pk] divides φKi · · ·φK1
in N . Moreover, writing φKi · · ·φK1

=

[pk]φLs · · ·φL1
, the φLβ are uniquely determined by H .

Proof We prove this by induction on the order of H . We may assume that

(Qp/Zp)2[pk] * H1 := ker(φKi−1
· · ·φK1

).

If not, then we are done by induction on the order.
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Thus we are in the situation where H ∼= Z/pk × Z/pj with k ≤ j and H1
∼= Z/pk−1 ×

Z/pj . By induction, there exist subgroups L1, . . . ,Ls of order p such that

φKi−1
· · · φK1

= [pk−1]φLs · · ·φL1
.

By definition

φLs[p
k−1]φLs−1

· · ·φL1
(H) = [pk−1]φLs · · ·φL1

(H)

= φKi−1
· · ·φK1

(H)

= Ki.

Now since H ∼= Z/pk × Z/pj where k ≤ j and H1
∼= Z/pk−1 × Z/pj , we must have

that φ−1
Ls

(Ki) = (Qp/Zp)2[p]. To see this, note that [pk−1]φLs−1
· · ·φL1

(H) ∼= Z/p2

would imply that (Qp/Zp)2[pk] * H , contradicting our assumption. It follows that

Ki = φLs((Qp/Zp)2[p]) = Ls.

So φKi = φLs and

φKi · · ·φK1
= φKi[p

k−1]φLs · · ·φL1

= [pk−1]φ2
Ls
φLs−1

· · ·φL1

= [pk]φLs−1
· · · φL1

.

This finishes the inductive construction. In order to see uniqueness, let φKi · · ·φK1
and

φK′
i
· · ·φK′

1
be two decompositions corresponding to two composition series for H as

above. Assume (Qp/Zp)2[pk] ⊆ H and (Qp/Zp)2[pk+1] * H , then

φKi · · ·φK1
= [pk]φLs · · · φL1

and

φK′
i
· · ·φK′

1
= [pk]φL′

s
· · ·φL′

1
.

We have that [pk]H ∼= H/[pk]H is cyclic and thus admits a unique decomposition.

Therefore, Lβ = L′
β for 1 ≤ β ≤ s.

With this in hand, we can produce power sections for n = 2.

Proposition 6.13 For each choice of endomorphisms for subgroups of order p in

(Qp/Zp)2 satisfying the conclusion of Lemma 6.11, there is a power section φ ∈

Γ(Sub(T), Isog(T)), i.e., a section φ such that for K ⊂ H

φH = φH/KφK ,

where H/K = φK(H).

Proof With notation as in the previous lemma, define φH to be the composite

φKi · · ·φK1
. The power section condition for φ follows from the uniqueness of its

normal form, given by Lemma 6.12.
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7 Recollections on Morava Etheory

In this section we recall the facts that we need about Morava E theory before we can

proceed. For any space X we set

En(X) = E0
n(X).

We will also set En = E0
n . By Goerss, Hopkins, Miller [GH04] there is a unique

E∞ ring structure on the spectrum En . In the homotopy category, this gives rise to

total power operations [BMMS86, Section VIII]. The total power operations are natural

multiplicative nonadditive maps

Pm : En(X) −→ En(EΣm ×Σm Xm),

for all m > 0, that satisfy the relations of Proposition 7.2.

A common simplification of Pm is given by restriction along the diagonal X
∆
−→ Xm .

This gives a map

Pm : En(X) −→ En(BΣm × X) ∼= En(BΣm) ⊗En En(X),

the isomorphism being a consequence of the freeness of En(BΣm) over En [Str98,

Proposition 3.6]. Let J ⊂ En(EΣpk ×Σ
pk

Xpk

) be the ideal generated by the image of

the transfers along the maps

E(Σi ×Σj) ×(Σi×Σj) Xpk

−→ EΣpk ×Σ
pk

Xpk

for i, j > 0 and i + j = pk and let I ⊂ En(BΣpk ) be the ideal generated by the image

of the same transfer for X = ∗. Neither Pm nor Pm are additive, but they can both be

made so by taking the quotient by J and I , respectively. Thus we have ring maps

Ppk/J : En(X) −→ En(EΣpk ×Σ
pk

Xpk

)/J

and

Ppk/I : En(X) −→ En(BΣpk × X) ∼= En(BΣpk )/I ⊗En En(X).

Let us call Ppk/J the additive total power operation. For m 6= pk it is still possible to

define Pm/J , but these ring maps are uninteresting.

Remark 7.1 We have abused notation by calling these ideals I and J in conflict with

the I and J defined prior to Proposition 6.2.

We will apply these power operations to X = BG; in this case

EΣm ×Σm Xm ≃ BG ≀ Σm.

Recall the maps of Equation (4) from Section 6. The relations that we will need are

the following:
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Proposition 7.2 ([BMMS86]) For any x ∈ En(X) and i, j,m ≥ 0, we have:

(1) ∇∗Pij(x) = PiPj(x),

(2) ∆∗Pm(x) = xm ,

(3) ∆∗
i,jPi+j(x) = δ∗(Pi(x)Pj(x)).

Proof The proof can be found in Chapter VIII from [BMMS86].

Corollary 7.3 (Proposition VIII.1.1, [BMMS86].) There is a commutative diagram

En(BG)
P

pk
//

P
pk−1

��

En(BG ≀ Σpk )

∇∗

��
En(BG ≀ Σpk−1)

Pp // En(BG ≀ Σpk−1 ≀ Σp) // En(BG ≀ Σp

pk−1)

and the formula for the whole composite is just x 7→ Ppk−1(x) ⊗ · · · ⊗ Ppk−1(x).

Proof The result follows immediately from Proposition 7.2 parts (1) and (3).

Character theory for Morava E theory is constructed in [HKR00]. Hopkins, Kuhn, and

Ravenel construct the ring C0 , which is introduced in Section 4, and produce a natural

character map

χ : En(BG) −→ Cln(G,C0)

with the property that the induced map

C0 ⊗En En(BG)
∼=

−→ Cln(G,C0)

is an isomorphism. They produce the action of Aut(T) on Cln(G,C0), described in

Proposition 4.1, and prove further that the above isomorphism induces an isomorphism

p−1En(BG)
∼=

−→ Cln(G,C0)Aut(T).

Note that En(BG) is a Zp algebra, so p−1En(BG) = Q⊗En(BG) is the rationalization

of the ring.

Theorem D in [HKR00] discusses the relationship between the character map and

transfer maps for En and class functions. For H ⊂ G there is a commutative diagram

En(BH)
Tr //

χ

��

En(BG)

χ

��
Cln(H,C0)

Tr // Cln(G,C0),
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where

Tr : Cln(H,C0) → Cln(G,C0)

is the transfer introduced in Section 6.

There is a close relationship between the E cohomology of finite groups and algebraic

geometry related to G . We will recall some of these results, and refer the interested

reader to [HKR00, Str98, SS15] for the details.

Let Hom(A∗,G) be the scheme of maps from A∗ to G and define Subpk (G) to be the

scheme of subgroups of order pk of G , sending an En algebra R to the collection of

subgroups H ⊆ R ⊗ G of order pk . Moreover, for A∗ ⊆ T′ a finite abelian group,

SubA∗

pk |A|(G⊕ T′) denotes the scheme with underlying functor

R 7→ {H ⊆ R ⊗G⊕ T′ | |H| = pk|A|, pr(H) = A∗}

for an En algebra R , where pr is induced by the natural projection G ⊕ T′ −→ T′ .

We often write pk′ = pk|A|. The following table provides the dictionary we need.

Topology Algebraic geometry

En(BA) Hom(A∗,G)

En(BΣpk )/I Subpk (G)

En(BA ≀ Σpk )/J SubA∗

pk′ (G⊕ T′)

These results can be found in [HKR00, Proposition 5.12], [Str98, Theorem 9.2], and

[SS15, Theorem 7.11].

8 The additive total power operation applied to abelian groups

Work of Ando [And95] as well as Ando, Hopkins, and Strickland [AHS04] gives an

algebrogeometric description of the additive power operation Ppk/I applied to finite

abelian groups. In this section we recall their result and prove an extension, which is a

key step in the proof of the main theorem.

Lemma 8.1 For any finite group G , there is an induced map

En(BG ≀ Σpk )/J −→ En(BG) ⊗En En(BΣpk )/I.

Geometry & Topology XX (20XX)



The character of the total power operation 1037

Proof The claim reduces to checking that the following commutative diagram is a

homotopy pullback for any i, j with i + j = pk :

B(G × Σi ×Σj) //

��

BG ≀ (Σi × Σj)

��
B(G × Σpk ) // BG ≀ Σpk .

Since the square is commutative, it suffices to show that BG ×Σi ×Σj has the correct

homotopy type. This is obvious for πk , k > 1. To see that the pullback is connected,

consider the double coset formula. Every element g = (g1, . . . , gpk ;σ) ∈ G ≀ Σpk

can be factored as (g1, . . . , gpk ; e) ◦ (1, . . . , 1;σ), where (1, . . . , 1;σ) ∈ G × Σpk and

(g1, . . . , gpk ; e) ∈ G ≀ (Σi ×Σj). Finally, π1 of the pullback is given by the intersection

of G × Σpk with G ≀ (Σi × Σj) inside G ≀ Σpk , which clearly is G × Σi × Σj .

There are two En algebra structures on En(BΣpk )/I of interest to us, given by the

following two maps: the standard inclusion i induced by BΣpk −→ ∗ and the power

operation Ppk/I : En → En(BΣpk )/I . Using Lemma 8.1 and the commutative diagram

En

P
pk/I

//

��

En(BΣpk )/I

��
En(BA)

P
pk/J

// En(BA ≀ Σpk )/J,

we thus obtain a commutative diagram of rings:

(6) En(BA)
P

pk/J

//

((◗◗
◗◗◗

◗◗◗
◗◗◗

◗

P
pk/I

--
En(BA ≀ Σpk )/J // En(BA) ⊗i

En
En(BΣpk )/I

En(BA) ⊗
P

pk/I

En
En(BΣpk )/I,

OO 44✐✐✐✐✐✐✐✐✐✐✐✐✐✐

where the superscripts on the tensor product indicate the relevant En algebra structure

on En(BΣpk )/I .

Remark 8.2 In our notation, A plays a very different role than in the setting of

[AHS04]. Indeed, they consider a level structure in place of our Σpk and S1 instead of

our A; the translation is readily made by passing to torsion subgroups of S1 and using

arbitrary subgroups, see [AHS04, Remark 3.12].

The following result is proven in [And95, 4.2.5] and [AHS04, 3.21].
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Proposition 8.3 (Ando–Hopkins–Strickland) The additive power operation

En(BA)
P

pk/I

−→ En(BA) ⊗i
En

En(BΣpk )/I

is the ring of functions on the map

hom(A∗,G) × Subpk (G) −→ hom(A∗,G)

induced by

(f : A∗ → R ⊗G,H ⊂ R ⊗G) 7→ (A∗ f
−→ R ⊗G −→ (R ⊗G)/H ∼= R ⊗

P
pk/I

En
G).

Fix a map Zt
p = L′ → A with A finite abelian, and let T′

= (L′)∗ . Let pk′ = pk|A|.

Recall from [SS15] that there is a formal scheme SubA∗

pk′ (G ⊕ T′) that associates to

any En algebra R the collection of subgroup schemes H ⊂ R ⊗ (G⊕ T′) of order pk′

which project onto A∗ via the natural map G⊕ T′ −→ T′ . The main result of [SS15]

implies that the ring of functions on SubA∗

pk′ (G ⊕ T′) is isomorphic to En(BA ≀ Σpk )/J .

Our extension of Proposition 8.3 can now be stated as follows.

Theorem 8.4 The additive total power operation modulo the transfer

En(BA)
P

pk/J

−→ En(BA ≀ Σpk )/J

is the ring of functions on the map

Q∗
pk : SubA∗

pk′ (G⊕ T′) −→ hom(A∗,G)

given by

(H ⊂ R ⊗ (G⊕ T′)) 7→ (A∗ −→ R ⊗G/K ∼= R ⊗
P

pk/I

En
G),

where K is the kernel in the map of short exact sequences

K //

=

��

H //

��

A∗

��
K // G // G/K

and H maps to G through the projection G⊕ T′
։ G .

The content of the theorem is that two maps between En(BA) and En(BA ≀Σpk)/J are in

fact the same map. The map Qpk is defined algebrogeometrically and the map Ppk/J

is the additive total power operation. By Proposition 8.3, we know that the maps are

equal after mapping further to En(BA) ⊗En En(BΣpk )/I . But the map

En(BA ≀ Σpk )/J −→ En(BA) ⊗En En(BΣpk )/I
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is not injective in general. The proof will proceed by building a ring that En(BA ≀Σpk)/J

injects into, and that can be attacked using Proposition 8.3.

Before giving the proof, we draw a consequence that is of interest in its own right.

Corollary 8.5 The map

Ppk/J ⊗
P

pk/I

En
En(BΣpk )/I : En(BA) ⊗

P
pk/I

En
En(BΣpk )/I −→ En(BA ≀ Σpk )/J

given in Diagram (6) is an isomorphism.

Proof This is the map that occurs in Theorem 8.4 base changed to En(BΣpk)/I . By

Theorem 8.4, there is a commutative diagram

En(BA)
P

pk/J
//

∼=

��

En(BA ≀ Σpk )/J

∼=
��

Γ hom(A∗,G)
Q

pk
// Γ SubA∗

pk′ (G⊕ T′),

where the vertical isomorphisms are canonical. Thus it is enough to show that

Qpk ⊗
P

pk/I

En
En(BΣpk )/I

is an isomorphism. Proposition 6.5 of [SS15] implies that it is an isomorphism.

The idea of the proof of Theorem 8.4 is to reduce the claim to the result of Ando–

Hopkins–Strickland by probing En(BA ≀Σpk)/J by an appropriate family F(A ≀ Σpk ) of

abelian subgroups of A ≀ Σpk that captures all of the transitive conjugacy classes. For

each of the abelian subgroups M ∈ F(A ≀ Σpk ), we show how the composite

En(BA)
P

pk/J

−→ En(BA ≀ Σpk )/J −→ En(BM)/IM

can be attacked using Proposition 8.3, where IM is the ideal in En(BM) generated by

the image of the transfer along all proper subgroups of M . This ring has been studied

in [AHS04] and is closely related to M level structures on G .

Definition 8.6 For each [α] ∈ hom(L,A ≀ Σpk )trans
/∼ , choose a representative that

satisfies Corollary 3.5. Let F(A ≀ Σpk ) be the set of images of these representatives.

Geometry & Topology XX (20XX)



1040 Tobias Barthel and Nathaniel Stapleton

By definition these subgroups fit into the commutative diagram

(7) K
ι //

=

��

M

��

πα

$$❍
❍❍

❍❍
❍❍

❍❍

K //

��

K ≀ Σpk
//

��

Σpk

=

��
A // A ≀ Σpk

// Σpk ,

where K denotes the pullback or, equivalently, the kernel of πα and M ∈ F(A ≀ Σpk ).

Lemma 8.7 For any abelian group A , the map

En(BA ≀ Σpk )/J −→
∏

M∈F (A≀Σ
pk )

En(BM)/IM

induced by restriction is injective.

Proof We first need to show that the map exists. The map exists if the homotopy

pullback of the diagram

B(A ≀ (Σi × Σj))

��
BM // B(A ≀ Σpk )

is a disjoint union of classifying spaces of proper subgroups of M when i, j > 1 and

i + j = pk . The classifying spaces in the homotopy pullback are of the form

B(gMg−1 ∩ (A ≀ (Σi × Σj)),

where g is a representative of a double coset in

M\(A ≀ Σpk )/(A ≀ (Σi ×Σj)).

The conjugate of a transitive subgroup is transitive and A ≀ (Σi × Σj) is not transitive,

thus the intersection cannot be all of M .

Since En(BA≀Σpk )/J is a finitely generated free En module (Proposition 5.3 in [SS15]),

we may check injectivity after applying the character map. This allows us to check

the claim on class functions, where it follows immediately from the construction of

F(A ≀ Σpk ).
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We now consider two maps between M and M ≀ Σpk . The first is the composite

M →֒ K ≀ Σpk →֒ M ≀ Σpk ,

and the second is the composite

M
id×πα // M ×Σpk

∆ // M ≀ Σpk .

Applying E cohomology to these maps gives the same map because they are conjugate:

Lemma 8.8 The square

En(BM ≀ Σpk )/J //

��

En(BM) ⊗i
En

En(BΣpk )/I

��
En(BK ≀ Σpk )/J // En(BM)/IM

commutes, where the maps are induced by the maps described just above.

Proof We show that the two maps M ⇒ M ≀ Σpk are conjugate. The composites

M ⇒ M ≀ Σpk → Σpk

coincide by construction. Thus, by Proposition 3.4, it suffices to show that the kernel

K factors through K
∆
−→ K ≀ Σpk by the identity map in each case. But this follows

from the commutativity of the following two diagrams:

K
ι //

ι

��

M

��✻
✻✻

✻✻
✻✻

✻✻
✻✻

✻✻
✻✻

✻✻

��

K //

=

��
ι

��

M

��✺
✺✺

✺✺
✺✺

✺✺
✺✺

✺✺
✺✺

✺✺

��
M × Σpk

��

K //

��

K ≀ Σpk

##●
●●

●●
●●

●●

��
M

∆ // M ≀ Σpk
// Σpk M

∆ // M ≀ Σpk
// Σpk .

Thus we have a commutative diagram in E cohomology without taking any quotients.

For each ring we may take the quotient by the appropriate transfer ideal to get the

square in the statement of the lemma.

We are now ready to put the pieces together to prove the main theorem of this section.

Geometry & Topology XX (20XX)



1042 Tobias Barthel and Nathaniel Stapleton

Proof of Theorem 8.4 By Lemma 8.7, we may reduce to showing that the following

two composites coincide

En(BA)

P
pk/J

//

Q
pk

// En(BA ≀ Σpk )/J
� � //

∏

M∈F (A≀Σ
pk )

En(BM)/IM .

We will prove this one factor at a time. Let M ∈ F(A ≀ Σpk ) and consider the diagram

En(BM)

P
pk/J

//

Q
pk

//

f
����

En(BM ≀ Σpk )/J //

��

En(BM) ⊗i
En

En(BΣpk )/I

��
En(BK)

P
pk/J

//

Q
pk

// En(BK ≀ Σpk )/J // En(BM)/IM

En(BA)

OO

P
pk/J

//

Q
pk

// En(BA ≀ Σpk )/J.

OO 55❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

The diagram commutes, where the Qpk ’s commute with Qpk ’s and the Ppk/J ’s commute

with Ppk/J ’s; for the top right square this follows from Lemma 8.8. The composites on

the top row are equal by Proposition 8.3. The surjectivity of f implies that the middle

two composites are equal. But now that these are equal, the composites from En(BA)

to En(BM)/IM must be equal. This proves the claim.

9 The character of the total power operation

In this section we establish the relevance of the multiplicative natural transformations

constructed in Section 5. The goal of this section is to prove the following theorem.

Theorem 9.1 Let Pm : En(BG) −→ En(BG ≀ Σm) be the total power operation for

Morava E cohomology applied to BG , and let χ : En(BG) −→ Cln(G,C0) be the

character map. For all n ≥ 0, all m ≥ 0, and any section φ ∈ Γ(Sub(T), Isog(T)),

there is a commutative diagram

En(BG)
Pm //

χ

��

En(BG ≀ Σm)

χ

��
Cln(G,C0)

Pφm // Cln(G ≀ Σm,C0),

which is natural in G .
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We will prove the theorem in three steps. First, our extension of the work of Ando,

Hopkins, and Strickland in Theorem 8.4 can be used to prove the theorem for the

additive total power operation applied to finite abelian groups. To extend this to all

finite groups, we use a modification of the fact that En(BG) rationally embeds under

the restriction map into
∏

A⊆G En(BA), where the product is over all abelian subgroups

of G . Finally, an inductive argument using character theory extends the result from the

additive total power operation to the total power operation.

Proposition 9.2 For a finite abelian group A the diagram

(8) En(BA)
P

pk/J
//

��

En(BA ≀ Σpk )/J

��
Cln(A,C0)

Pφ
pk
/J

// Cln(A ≀ Σpk ,C0)/J

commutes.

Proof By Proposition 6.2, the terminal object in the square is the product

Cln(A ≀ Σpk ,C0)/J ∼=
∏

Sub
pk (T,A)

C0.

Thus it suffices to fix an element (H, [α]) ∈ Subpk (T,A) and prove the result for the

factor corresponding to (H, [α]). Since Pφ
pk/J is the rationalization of a map between

products of the Drinfeld ring D∞ by Remark 6.5, it suffices to replace C0 with D∞ .

For R a complete local ring, a map D∞ −→ R out of the factor corresponding to

(H, [α]) is the data

(9) (H ⊂ T, α : LH −→ A,T →֒ R ⊗En G).

We are suppressing the data of the LubinTate moduli problem. Note that, since A is

abelian, α = [α] and that we may replace α by

α∗ : A∗ −→ T /H.

Let L′
= Zt

p and T′
= (L′)∗ , where t is greater than or equal to the number of

generators of A . Let L′
։ A be a surjection. By the algebrogeometric description of

En(BA ≀Σpk )/J in Theorem 7.11 of [SS15], the right vertical map in (8) sends the data

in (9) to the pullback

B //

��

G⊕ T′

��
A∗ // (R ⊗En G)/H ⊕ T′ .
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The top horizontal map in (8) sends this data to the composite

(10) A∗ −→ (R ⊗En G)/H ∼= R ⊗QH

En
G

by Proposition 8.3.

Going around the other way first sends the data to the pair of composites

(A∗ α∗

−→ T /H
ψH
−→ T,T

ψ−1
H−→ T /H −→ R ⊗QH

En
G)

and then composes them to give

A∗ −→ R ⊗QH

En
G,

which is the same as the map in (10).

Lemma 9.3 There is an embedding

p−1En(BG ≀ Σpk )/J →֒
∏

A⊆G

p−1En(BA ≀ Σpk )/J.

Proof Since C0 is a faithfully flat p−1En algebra it suffices to check this on class

functions. Thus the claim is equivalent to there being a surjection of sets

∐

A⊆G

Subpk (T,A) −→ Subpk (T,G).

This is a surjection because any map LH −→ G factors through its image, which is an

abelian subgroup of G .

Proposition 9.4 For G a finite group, the diagram

En(BG)
P

pk/J
//

��

En(BG ≀ Σpk )/J

��
Cln(G,C0)

Pφ
pk
/J

// Cln(G ≀ Σpk ,C0)/J

commutes.

Proof The map from the top arrow to the bottom arrow factors through the rational

ization because Ppk/J is a ring map and C0 is a rational algebra. It suffices to consider
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the following cube

p−1En(BG)

P
pk/J

xx♣♣♣
♣♣
♣♣
♣♣♣

♣♣
♣♣
♣

��

//
∏

A⊆G

p−1En(BA)

∏
P

pk/J
vv♥♥♥

♥♥♥
♥♥♥

♥♥♥
♥

��

p−1En(BG ≀ Σpk )/J

��

//
∏

A⊆G

p−1En(BA ≀ Σpk )/J

��

Cln(G,C0)

Pφ
pk
/J

ww♣♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

//
∏

A⊆G

Cln(A,C0)

∏
Pφ

pk
/J

vv♠♠♠
♠♠♠

♠♠♠
♠♠♠

♠

Cln(G ≀ Σpk )/J //
∏

A⊆G

Cln(A ≀ Σpk )/J.

The top and bottom squares commute by naturality, the back and front squares commute

by character theory (Theorems C and D in [HKR00]), and the right square commutes

by Proposition 9.2. Now, since the horizontal maps are injections, the left square must

commute.

Proposition 9.5 For all k > 0 and any finite group G , there is an injection

Cln(G ≀ Σpk ,C0) →֒ (Cln(G ≀ Σpk ,C0)/J) × Cln(G ≀ Σp

pk−1 ,C0),

where the map to the left factor is the quotient and the map to the right factor is given

by restriction.

Proof It is just a matter of checking this on conjugacy classes. Every element of

Subpk (T,G) ⊆ Sumpk (T,G) is hit by the left factor. By Proposition 3.6, the map to the

other factor is induced by the map

p
∏

l=1

Sumpk−1 (T,G) ։ Sumpk (T,G) \ Subpk (T,G)

defined by
p
∏

l=1

jl
⊕

i=1

(Hi,l, [αi,l]) 7→

p
⊕

l=1

jl
⊕

i=1

(Hi,l, [αi,l])

which is clearly surjective. Note that it is not an isomorphism as it sends an ordered

collection of sums to their (unordered) sum.

The following proposition is the base case of an induction on k in the proof of

Theorem 9.1.
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Proposition 9.6 There is a commutative diagram

En(BG)
Pp //

χ

��

En(BG ≀ Σp)

χ

��
Cln(G,C0)

Pφp // Cln(G ≀ Σp,C0).

Proof Consider the following diagram

(11) En(BG)
Pp //

��

En(BG ≀ Σp)

��

// En(BGp) × (En(BG ≀ Σp)/J)

��
Cln(G,C0)

Pφp // Cln(G ≀ Σp,C0) // Cln(Gp,C0) × (Cln(G ≀ Σp,C0)/J).

The right vertical arrow is just the product of character maps. First we show that the

outer rectangle

(12) En(BG) //

��

En(BGp) × (En(BG ≀ Σp)/J)

��
Cln(G,C0) // Cln(Gp,C0) × (Cln(G ≀ Σp,C0)/J)

commutes. It commutes for the right factor by Proposition 9.4.

The commutativity of the left factor is proven as follows. It is a result of [HKR00] that

the image of En(BG) is in the Aut(T) ∼= GLn(Zp) invariants of Cln(G,C0), where the

Aut(T)action is the action induced by Proposition 4.1. Recall that for f ∈ Cln(G,C0),

the action takes the form

f φe([α]) = φ∗e f ([αψ∗
e ]),

where ψe = φe since it factors the identity map:

T

id=qe $$■
■■

■■
■■

■■
■

φe // T

T /e = T .

ψe

OO

Next note that the inclusion Gp →֒ G ≀ Σp induces the map on conjugacy classes

sending

([αi])i=1...p 7→
⊕

i=1...p

(e, [αi]).

Thus the composite of the bottom arrows sends

f 7→ ⊗if
φe ([αi]).
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For x ∈ En(BG), χ(x) is fixed by this action, so χ(x) maps to ⊗iχ(x) = χ(⊗ix). Now

by Corollary 7.3 for k = 1, the square in (12) commutes.

Finally, the right square in (11) commutes by naturality of the character map. Since the

bottom right arrow is an injection by Proposition 9.5, the left square must commute as

well.

Now we finish the induction.

Proposition 9.7 The following diagram commmutes:

En(BG)
P

pk
//

χ

��

En(BG ≀ Σpk )

χ

��
Cln(G,C0)

Pφ
pk

// Cln(G ≀ Σpk ,C0).

Proof Consider the following diagram

En(BG)
P

pk
//

��

En(BG ≀ Σpk )

��

// En(BG ≀ Σp

pk−1) × (En(BG) ⊗En En(Σpk )/I)

��
Cln(G,C0)

Pφ
pk

// Cln(G ≀ Σpk ,C0) // Cln(G ≀ Σp

pk−1 ,C0) × (Cln(G,C0) ⊗C0
Cln(Σpk ,C0)/I).

The outer rectangle commutes because we understand the maps to each factor in

the right lower corner. The map to the left factor is determined by induction and

Corollary 7.3. The map to the right factor commutes by Proposition 9.4. The bottom

right map is an injection by Proposition 9.5. Thus the left square must commute.

Finally, we finish the proof of Theorem 9.1.

Proof of Theorem 9.1 Let
∑

j ajp
j be the padic expansion of m . Then the inclusion

of groups
∏

j

Σ
aj

pj −→ Σm

induces a commutative square

En(BG ≀ Σm) //

��

En(
∏

j

BG ≀ Σ
aj

pj)

��
Cln(G ≀ Σm,C0)

� � // Cln(
∏

j

G ≀ Σ
aj

pj ,C0),
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in which the bottom arrow is an injection by Lemma 3.8. By Proposition 7.2 part (3),

the composite

En(BG)
Pm−→ En(BG ≀ Σm) −→ En(

∏

j

BG ≀ Σ
aj

pj)

is the external tensor product ⊗jP
⊗aj

pj . Consider the following diagram:

En(BG) //

��

En(BG ≀ Σm) //

��

En(
∏

j

BG ≀ Σ
aj

pj)

��
Cln(G,C0) // Cln(G ≀ Σm,C0)

� � // Cln(
∏

j

G ≀ Σ
aj

pj ,C0).

By Proposition 9.7, we know that the outer rectangle commutes, and the right square

commutes by naturality of the character map. This implies that the left square com

mutes.

Example 9.8 In Proposition 3.6.1 of [And95], Ando constructs Adams operations for

Morava E theory. Reformulating his construction in terms of the power operation for

En shows that the Adams operations are the composite

ψpk

: En(BG)
P

pkn/I

−→ En(BG) ⊗En En(BΣpkn)/I −→ En(BG),

where the last map is induced by the map

En(BΣpkn)/I −→ En,

picking out the subgroup G[pk] ⊂ G . Example 6.7 computes the same composite on

class functions. As a special case of Theorem 9.1, we have a commutative diagram

En(BG)
ψpk

//

χ

��

En(BG)

χ

��
Cln(G,C0)

ψpk

// Cln(G,C0).

When κ ⊂ Fpn and G is the universal deformation of the Honda formal group, this

gives a generalization of the wellknown formula from representation theory stating

that, for a representation ρ ,

χ(ψm(ρ))(g) = χ(ρ)(gm).
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10 The rational total power operation

Recall that there is an action of Aut(T) on Cln(G,C0). It is Theorem C of [HKR00]

that there is a canonical isomorphism

p−1En(BG) ∼= Cln(G,C0)Aut(T).

In this section we prove that, for any section φ , Pφm sends Aut(T)invariants to Aut(T)

invariants and that the restriction of Pφm to the Aut(T)invariants is independent of the

choice of φ . The resulting “rational total power operation" is a global power functor.

Theorem 10.1 For all finite groups G and any section φ ∈ Γ(Sub(T), Isog(T)), the

function

Pφm : Cln(G,C0) −→ Cln(G ≀ Σm,C0)

sends Aut(T)invariants to Aut(T)invariants. By restricting Pφm to the Aut(T)

invariants, this gives rise to a commutative diagram

En(BG)
Pm //

��

En(BG ≀ Σm)

��
p−1En(BG)

Pφm

// p−1En(BG ≀ Σm).

Proof By Theorem C of [HKR00] and Theorem 9.1, it is thus enough to show that

the multiplicative natural transformation

Pφm : Cln(G,C0) −→ Cln(G ≀ Σm,C0)

restricts to the Aut(T)fixed points of both sides. To this end, recall from Corollary 3.12

that the action of σ ∈ Aut(T) on
⊕

i(Hi, [αi]) ∈ Summ(T,G) is given by

(13) σ :
⊕

i

(Hi, [αi]) 7→
⊕

i

(σHi, [αiσ
∗
|LHi

]),

with notation as in the following commutative diagram:

LσHi
//

σ∗
|LσHi

��

L

σ∗

��
LHi

// L .
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Fix an automorphism σ ∈ Aut(T) and an invariant element f ∈ Cln(G,C0)Aut(T) . Since

φHi and φσHiσ have the same kernel, there exists a unique isomorphism γi ∈ Aut(T)

making the diagram

T σ //

φHi

��

T

φσHi

��
T γi

∼= // T

commute. Upon dualizing and using the identities φHi = ψHi ◦ qHi and φσHi =

ψσHi ◦ qσHi , we see that the inner squares and triangles in the next diagram commute:

LHi

q∗Hi

  ❆
❆❆

❆❆
❆❆

❆
LσHi

σ∗
|LσHioo

q∗σHi

||③③
③③
③③
③③

L Lσ∗oo

L

φ∗Hi

OOψ∗
Hi

XX✵✵✵✵✵✵✵✵✵✵✵✵✵✵

L .
γ∗

oo

φ∗σHi

OO ψ∗
σHi

EE☞☞☞☞☞☞☞☞☞☞☞☞☞☞☞

Therefore, the outer diagram commutes as well and hence gives

(14) σ∗|LσHi

ψ∗
σHi

= ψ∗
Hi
γ∗.

Now we can check that Pφm(f ) is invariant under the action of Aut(T):

Pφm(f )σ(
⊕

i

(Hi, [αi])) = σ∗
∏

i

Pφm(f )((σHi, [αiσ
∗
|LσHi

])) by (13)

=
∏

i

σ∗φ∗σHi
f ([αiσ

∗
|LσHi

ψ∗
σHi

])

=
∏

i

φ∗Hi
γ∗i f ([αiψ

∗
Hi
γ∗i ]) by (14)

=
∏

i

φ∗Hi
f ([αiψ

∗
Hi

]) as f ∈ Cln(G,C0)Aut(T)

=
∏

i

f φHi ([αi])

= Pφm(f )(
⊕

i

(Hi, [αi])).

Corollary 10.2 The restriction of Pφm to the Aut(T)invariants

Pφm : p−1En(BG) −→ p−1En(BG ≀ Σm)
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is independent of the chosen section φ .

First proof As in the proof of Theorem 9.1, we can reduce to the case m = pk . By

naturality and Lemma 9.3, it furthermore suffices to prove this for abelian groups, since

p−1En(BG) embeds into the product of the rationalized E cohomology of the abelian

subgroups of G . We have two maps

p−1En(BA) −→ p−1En(BA ≀ Σpk )/J;

the first is the rationalization Q⊗Ppk/J of Ppk/J and the second is Pφ
pk/J restricted to the

Aut(T)fixed points. Because En(BA) is a finitely generated free En module, we may

choose a basis of En(BA) which thus gives a basis for p−1En(BA). By Theorem 10.1

both maps send the basis elements to the same elements of the codomain, thus the maps

are the same.

We get the full result by induction. We use the embedding

p−1En(BA ≀ Σpk )
� � // p−1En(BA ≀ Σpk )/J × p−1En(BA ≀ Σp

pk−1)

and induct on k . The base case is clear and the induction follows by considering the

large diagram and right diagram just as in Proposition 9.7.

Second proof We give a second proof of the corollary which is intrinsic to the

construction of Pφm and in particular does not rely on properties of Morava E 

theory. To this end, consider two sections φ, φ′ ∈ Γ(Sub(T), Isog(T)) with associ

ated isomorphisms ψH, ψ
′
H : T /H

∼=
−→ T for H ⊂ T as in Section 2. For a fixed

⊕

i(Hi, [αi]) ∈ Summ(T,G), take γHi ∈ Aut(T) to be the unique automorphism mak

ing the following diagram commute

(15) T = //

φ′Hi
��

T

φHi

��
T γHi

∼= // T .

As in the proof of Theorem 10.1 with σ = id, we see that, for any f ∈ Cln(G,C0)Aut(T) ,

Pφm(f )(
⊕

i

(Hi, [αi])) =
∏

i

φ∗Hi
f ([αiψ

∗
Hi

])

=
∏

i

(φ′Hi
)∗γ∗Hi

f ([αi(ψ
′
Hi

)∗γ∗Hi
]) by (15)

=
∏

i

(φ′Hi
)∗f ([αi(ψ

′
Hi

)∗]) as f ∈ Cln(G,C0)Aut(T)

= Pφ
′

m (f )(
⊕

i

(Hi, [αi])),
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hence Pφm = Pφ
′

m on p−1En(BG) ∼= Cln(G,C0)Aut(T) .

It follows that Q ⊗ Ppk/J = Pφ
pk/J after restricting Pφm/J to p−1En(BG). Therefore,

the following definition makes sense.

Definition 10.3 For any section φ , let

PQ
m : p−1En(BG) // p−1En(BG ≀ Σm)

be the restriction of Pφm to p−1En(BG). We will call this the rational total power

operation.

Theorem 10.4 The rational total power operation PQ
m is a global power functor.

Proof We must show that the diagram

p−1En(BG)
PQ

m //

PQ
s
��

p−1En(BG ≀ Σm)

∇
��

p−1En(BG ≀ Σs)
PQ

t

// p−1En(BG ≀ Σs ≀ Σt)

commutes, where st = m and ∇ is induced by the natural inclusion.

This is a computation that follows the lines of the proof of Proposition 6.9. In

Proposition 6.9 we work with a power section and here we work with an Aut(T)

invariant class functions. We will use the notation of Proposition 6.9.

Choose a section φ ∈ Γ(Sub(T), Isog(T)). Since φTi,j and φTi,j/Hi
φHi have the same

kernel, there exists an automorphism σ ∈ Aut(T) such that

φTi,j = σφTi,j/Hi
φHi .

Diagram 5 implies that

ψ∗
Ti,j

= ψ∗
Hi
|LψHi

(Ki,j)
ψ∗

Ti,j/Hi
σ∗.

Now assume that f ∈ Cln(G,C0)Aut(T) . The global power structure of φ in the proof

of Proposition 6.9 is used in going from line 7 to line 8 in the sequence of equalities.

Up to line 7 we have the same sequence of equalities that give

Pφt (Pφs (f ))(
⊕

i

(Hi,
⊕

j

(Ki,j, [(αHi )Ki,j]))) =
∏

i

∏

j

φ∗Hi
φ∗Ti,j/Hi

f ([(αHi )Ki,jψ
∗
Hi
|LψHi

(Ki,j)
ψ∗

Ti,j/Hi
]).
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Now we use the fact that f is Aut(T)invariant to get
∏

i

∏

j

φ∗Hi
φ∗Ti,j/Hi

f ([(αHi )Ki,jψ
∗
Hi
|LψHi

(Ki,j)
ψ∗

Ti,j/Hi
])

=
∏

i

∏

j

φ∗Hi
φ∗Ti,j/Hi

σ∗f ([(αHi )Ki,jψ
∗
Hi
|LψHi

(Ki,j)
ψ∗

Ti,j/Hi
σ∗])

=
∏

i

∏

j

φ∗Ti,j
f ([(αHi )Ki,jψ

∗
Ti,j

])

= Pφm(f )(
⊕

i,j

(Ti,j, [(αHi )Ki,j])).

In particular, this generalizes a result of Ganter [Gan, Proposition 4.12] to arbitrary

heights and answers a question that she poses after the proof of Proposition 4.12 in

[Gan].

Corollary 10.5 The character map

χ : En(B−) −→ p−1En(B−) ∼= Cln(−,C0)Aut(T)

is a map of global power functors.

Example 10.6 We give an example of how these theorems may be used. Proposition 8.3

describes Ando, Hopkins, and Strickland’s algebrogeometric interpretation of the ad

ditive power operation

Ppk/I : En −→ En(BΣpk )/I.

Let

L ⊂ En(BΣpk ≀ Σph)

be the ideal generated by the image of the transfer along the maps

(Σi ×Σj) ≀ Σph −→ Σpk ≀ Σph ,

where i, j > 0 and i + j = pk , as well as the maps

Σpk ≀ (Σi × Σj) −→ Σpk ≀ Σph ,

where i, j > 0 and i + j = ph . It is a folklore result of Rezk (now proved by Nelson in

[Nel]) that

En(BΣpk ≀ Σph)/L
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is finitely generated and free as an En module and corepresents the scheme Subpk ,ph(G)

of flags of subgroup schemes H0 ⊆ H1 ⊂ G , where |H0| = pk and |H1/H0| = ph .

By considering the power operation Pph applied to the transfer along Σi × Σj ⊂ Σpk

for i, j > 0 and i + j = pk , there is a commutative ring map

En(BΣpk )/I
P

ph/L

−→ En(BΣpk ≀ Σph)/L.

It is also natural to consider the composite

En

P
pk/I

−→ En(BΣpk )/I
P

ph/L

−→ En(BΣpk ≀ Σph)/L.

Both Pph/L and Pph/L ◦ Ppk/I can be understood algebrogeometrically by using

Theorem 9.1.

There is a natural map of formal schemes from flags of subgroups to subgroups

Z : Subpk ,ph(G) → Subph(G)

given by

(H0 ⊆ H1 ⊂ G) 7→ (H1/H0 ⊂ G/H0)

and a map

z : Subpk,ph(G) → Subph (G) → Spf(En)

given by

(H0 ⊆ H1 ⊂ G) 7→ G/H1.

Theorem 9.1 gives a way to see that the algebrogeometric maps and the power opera

tions agree. Using Theorem 10.4, it is easy to check that both maps make the following

diagram commute

En

P
ph/L◦P

pk/I
//

z∗
//

��

En(BΣpk ≀ Σph)/L

��
C0

// Cln(BΣpk ≀ Σph ,C0)/L.

Since the vertical maps are injective, this implies that both Pph/L ◦ Ppk/I and z∗ are

the same map.
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